Monogenity in totally real extensions of imaginary quadratic fields with an application to simplest quartic fields

نویسندگان

چکیده

Abstract We describe an efficient algorithm to calculate generators of power integral bases in composites totally real fields and imaginary quadratic with coprime discriminants. show that the calculation can be reduced solving index form equations original fields. illustrate our method by investigating monogenity infinite parametric family extensions simplest quartic

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic extensions of totally real quintic fields

In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...

متن کامل

Class number in totally imaginary extensions of totally real function fields

We show that, up to isomorphism, there are only finitely many totally real function fields which have any totally imaginary extension of a given ideal class number.

متن کامل

Zp-Extensions of Totally Real Fields

We continue our investigations into complex and p-adic variants of H. M. Stark’s conjectures [St] for an abelian extension of number fields K/k. We have formulated versions of these conjectures at s = 1 using so-called ‘twisted zeta-functions’ (attached to additive characters) to replace the more usual L-functions. The complex version of the conjecture was given in [So3]. In [So4] we formulated...

متن کامل

Visualizing imaginary quadratic fields

Imaginary quadratic fields Q( √ −d), for integers d > 0, are perhaps the simplest number fields afterQ. They are equal parts helpful first example and misleading special case. LikeZ, the Gaussian integersZ[i] (the cased = 1) have unique factorization and a Euclidean algorithm. As d grows, however, these properties eventually fail, first the latter and then the former. The classical Euclidean al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Scientiarum Mathematicarum

سال: 2023

ISSN: ['0324-5462', '2064-8316', '0001-6969']

DOI: https://doi.org/10.1007/s44146-023-00081-y